US ERA ARCHIVE DOCUMENT

Recirculation-To-Energy Crow Wing County, Minnesota

RTE . . . Small Landfill . . . Big Results

Fred Doran

EPA Bioreactor Workshop

February 28, 2003

Outline

- Site Background
- Visual Tour
- Project Goals and Supporting Data
- Nitrification Denitrification
- RTE Development
- The Future

Site Background

- Began Operation in 1991
- 40,000 tons/year
- Annual Precipitation 30 inches
- 3 cells
 - 7.8 acres open
 - Remaining Life 20+ years
- Integrated Public System
 - Recycling
 - Yard waste
 - Demolition Debris
 - HHW
 - Industrial Waste
 - MSW Disposal

Leachate Management

- Pretreatment
- Hauling to WWTP
- Land Application 1996
- Recirculation 1998

RTE Operation Goals

- Minimize leachate hauling
- On-site responsibility
- Optimize airspace
- Minimize long-term liability
- Energy recovery

Leachate Generation and Disposal

Year	Total Leachate Generated (gallons)	Leachate Hauled (gallons)	Leachate Land Applied (gallons)	Leachate Recirculated (gallons)
1992	1,900,000	1,600,000	NA	NA
1993	2,200,000	2,000,000	NA	NA
1994	1,600,000	1,700,000	NA	NA
1995	2,200,000	2,000,000	24,000	NA
1996	2,800,000	500,000	1,500,000	NA
1997	2,600,000	1,000,000	1,700,000	36,000
1998	2,200,000	0	1,800,000	400,000
1999	2,000,000	0	2,500,000	900,000
2000	1,700,000	0	1,600,000	900,000
2001	2,000,000	0	2,800,000	1,400,000
2002	4,400,000	200,000	4,200,000	2,300,000
NA = Not Available				

Recirculation Volume per Ton Disposed

Year	Recirculation Volume (gal)	Tonnage Disposed	Gallons per Ton
1998	434,830	33,110	13.1
1999	877,675	33,174	26.5
2000	869,988	35,731	24.2
2001	1,395,782	38,673	36.1
2002	2,276,015	42,863	53.1
Total	5,848,290	183,551	31.9
DSWA			6.8

Field Capacity: 50 to 130 Gallons/ton

Comparison of BOD Concentration Crow Wing vs. DSWA

BOD/COD Ratio

Leachate Quality vs. Groundwater Standards (ug/l)

(* 3 /					
Parameter	Value (a)	MCL			
Arsenic	95	10 (b)			
Barium	410	2,000			
Chromium	52	100			
P-Dichlorobenzene	25	75			
Ethylbenzene	66	700			
Toluene	40	1,000			
Total Xylenes	184	10,000			

⁽a) October 2002

⁽b) Proposed 2006

Nitrification / Denitrification

Recirculation to Energy (RTE)

At a small Landfill where active control is <u>not</u> required:

- Converts methane to a productive reuse for energy generation and heat recovery;
- Reduces greenhouse and organic emissions; also reduces organics in leachate;
- Provides a reliable source of renewable power, at a reasonable price; and
- MN utilities are required to include renewable energy in their portfolio.

Recirculation to Energy Steps

- Feasibility Verification
 - Modeling
 - Field Pump Tests
 - Evaluation
- Utility Negotiation
- Air Permitting
- Construction
- Start-Up

LFG Feasibility Test

Equilibrium Test Results

Location	Flow (cfm)	CH ₄ (%)
GW-4	100	55
GW-4 (a)	140	55
GW-4 (b)	110	60
RL-6	0	<1
LC-3	130	45

²⁴⁻hr tests except RL-6, GW-4 (b)

⁽a) Leachate pumped out before test

⁽b) 1-month test

Power Production

Operational/Design Hurdles

- Recirculation lateral layout/distribution;
- Recovery LFG from a recirculating landfill;
- Winter Operation;
- Settlement; and
- Seep Control.

Administrative Hurdles

- Long term purchase agreement with local power utility;
 - Utility is over capacity/downsizing
 - Transmission to market demand wheeling cost
 - Utility currently meets renewable standards
 - Small project 800 kW
- Long term commitment from waste haulers; and
- Long term regulatory acceptance.

The Future

- Continue to Recirculate
- Expand recirculation into Cell 3
- Spray Cell 3 Working Face
- Continue data collection
 - Leachate temperature (Cell 3)
 - Nitrification/Denitrification
- Develop RTE project